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Transmission/disequilibrium tests have attracted much attention in genetic studies of complex traits because
(a) their power to detect genes having small to moderate effects may be greater than that of other linkage methods
and (b) they are robust against population stratification. Highly polymorphic markers have become available
throughout the human genome, and many such markers can be studied within short physical distances. Studies
using multiple tightly linked markers are more informative than those using single markers. However, such infor-
mation has not been fully utilized by existing statistical methods, resulting in possibly substantial loss of information
in the identification of genes underlying complex traits. In this article, we propose novel statistical methods to
analyze multiple tightly linked markers. Simulation studies comparing our methods versus existing methods suggest
that our methods are more powerful. Finally, we apply the proposed methods to study genetic linkage between the
dopamine D2 receptor locus and alcoholism.

Introduction

The lack of success, by either model-dependent para-
metric methods or model-independent allele-sharing
methods, in the identification of genes for complex traits
has led researchers to question whether such studies have
enough power to detect genes with small to moderate
effects (Risch and Merikangas 1996). Although case-
control association studies commonly have been used to
study the association between diseases and candidate
genes, there is always the possibility of population strat-
ification as a cause of the observed association. This is
especially a concern for studies in heterogeneous pop-
ulations, such as the population in the United States.

To reduce the effects of population stratification,
many family-based association methods have been
proposed (Rubinstein et al. 1981; Falk and Rubinstein
1987; Ott 1989; Terwilliger and Ott 1992; Spielman et
al. 1993; Thomson 1995). Although some of these
methods are not robust to population stratification, the
transmission/disequilibrium test (TDT), introduced by
Spielman et al. (1993), is a valid test for linkage in
structured populations, irrespective of whether the fam-
ilies are simplex, multiplex, or multigenerational (Spiel-
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man and Ewens 1996). Power studies have shown that,
for the detection of linkage of complex traits, the TDT
may have greater power than do allele-sharing methods
(Risch and Merikangas 1996).

With the rapid progress in the Human Genome Pro-
ject, many genetic markers can now be identified and
genotyped within a very short physical distance, and the
study of multiple markers will be likely to yield more
genetic information than the study of single markers.
However, as we will illustrate in the next section, avail-
able statistical methods either are not able to analyze
multiple markers simultaneously or have been devel-
oped under assumptions that are not met by real data.
To take full advantage of multiple tightly linked mark-
ers, we propose novel statistical methods to analyze
multisite parental transmission data. We first review
available methods that can be used to analyze multiple
tightly linked markers, and we point out their deficien-
cies in the handling of real data. We then describe our
approach for analysis of such data. The new methods
are compared with the existing methods through sim-
ulation studies, and they are then applied to the study
of genetic linkage between the dopamine D2 receptor
locus (DRD2) and alcoholism.

Methods

In this section, we first will describe existing methods
that can be used to analyze multiple markers, point out
their limitations, and then propose new methods with
which to simultaneously analyze tightly linked markers.
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Method of Lazzeroni and Lange (1998)

When multiple markers within a candidate region are
studied, one strategy would be to analyze each marker
separately and then, by the Bonferroni correction, adjust
for multiple comparisons, to obtain an overall statistical
significance level for linkage. Lazzeroni and Lange
(1998) suggested the following method, which is less
conservative than the standard Bonferroni correction for
multiple tests. Suppose that the TDT is conducted at m
markers . Denote the test statistic atA ,A , … ,A1 2 m

marker as Ti, and denote the corresponding P valueA i

as pi. The adjusted P value defined by Lazzeroni and
Lange (1998) is , wherep̃(p) p Pr[min p � pFH ]1�i�m i 0

H0 is the combined null hypothesis that there is no link-
age at any one of the markers. In the following discus-
sion, we denote this single-marker–based testing pro-
cedure as Ts.

This approach ignores possible dependence among the
markers, and such dependence may provide valuable in-
formation for linkage. Consider a hypothetical two-
marker system with alleles A and a at marker andA
with alleles B and b at marker . Suppose that each ofB
the four haplotypes (AB, ab, Ab, and aB) has an equal
frequency in the population. If having haplotype Ab or
aB increases the disease risk, and if having haplotype
AB or ab reduces the disease risk, then the TDT applied
to each marker separately would reveal no evidence for
linkage, although strong evidence would be likely to
emerge from a joint analysis.

Ambiguities in Haplotypes for Multilocus Data

Sethuraman (1997), Wilson (1997), and Clayton and
Jones (1999) proposed TDTs that use multiple markers
jointly. Their methods assume that the haplotypes are
known in the parents and are not applicable to haplo-
type-unknown data. However, for data collected on nu-
clear families, haplotypes in the parents may not be
uniquely resolved. In our genetic studies of alcoholism,
three RFLPs spanning 30 kb within the DRD2 locus
were genotyped: TaqIB, TaqID, and TaqIA. It is known
that linkage disequilibrium exists across this locus (Kidd
et al. 1998). We denote the alleles at each marker by
integers. Consider the following family:

TaqIB TaqID TaqIA
Father 12 12 11

.
Mother 22 12 22
Child 12 12 12

Under the reasonable assumption of no recombinations
among these markers in this family, the following two
haplotype scenarios, (A) and (B), are both compatible
with the observed set of individual site genotypes:

( )A
Father’s haplotypes {111,221}
Mother’s haplotypes {222,212}
Offspring’s haplotypes {111,222}

or

( )B
Father’s haplotypes {121,211}

.
Mother’s haplotypes {212,222}
Offspring’s haplotypes {121,212}

The probabilities of scenarios (A) and (B) in the example
given above depend on many parameters related to the
population structure under study, as well as on parame-
ters related to the disease model. In general, the two
scenarios do not have the same probability. As has been
pointed out by Dudbridge et al. (2000), a necessary con-
dition for haplotype ambiguity is that there is a locus
for which both parents and offspring have the same het-
erozygous genotype and that there is another locus for
which both parents and offspring do not have the same
homozygous genotype. Unless there is complete disequi-
librium among the markers, such that the testing of ad-
ditional markers does not increase the number of am-
biguous families, the proportion of ambiguous families
increases with the number of markers studied.

Method of Clayton (1999)

Clayton (1999) has proposed to estimate haplotype
frequencies and to construct a likelihood that considers
all possible solutions. However, his method is not robust
to population stratification, which is not in keeping with
the basic principle for family-based association studies.

Method of Dudbridge et al. (2000)

In a recent report, Dudbridge et al. (2000) have pro-
posed an unbiased test for individual haplotypes, by cal-
culation of the correct variance for the transmission
count within a family, using information from multiple
siblings if the latter are available. However, families with
ambiguous haplotypes have to be discarded from the
analysis, resulting in loss of information.

Proposed Methods

Let

P p P(father has haplotypes {H ,H } and transmitsik,jl i j

H , and mother has haplotypes {H ,H }i k l

and transmits H Foffspring is affected) .k

When there is no linkage between the marker and the



938 Am. J. Hum. Genet. 67:936–946, 2000

Table 1

Summary of Test Statistics Compared in This Article

Test
Statistic Description

Ts Studies each marker separately
Td Discards ambiguous families
Th Assumes that haplotype information is known
Tu Estimates haplotype frequencies only by use of unam-

biguous families
Tc Estimates haplotype frequencies by use of both unam-

biguous families and ambiguous families, by assign-
ing each compatible haplotype group equal probabil-
ity for each ambiguous family

Tml Estimates haplotype frequencies by assuming that par-
ents are a random sample of individuals from a pop-
ulation with Hardy-Weinberg equilibrium

disease genes and there is no segregation distortion,
. If the transmission patterns are not genderP p Pik,jl jl,ik

specific; that is, if there is no difference between maternal
transmission and paternal transmission, then P pik,jl

. If the haplotypes in each parent could be identified,Pki,lj

TDTs could be carried out, on the basis of the following
transmission/nontransmission table :h # h T

…1 2 h
…1 t t t11 12 1h
…2 t t t ,21 22 2h

_ _ _ _ _
…h t t th1 h2 hh

where tgd is the number of parents with haplotypes HgHd

who transmit Hg to the affected offspring and where h
is the total number of possible haplotypes. We use dif-
ferent subscripts here to make it clear that the trans-
mission/nontransmission table is constructed by pooling,
in the same table, the contributions from both parents.
One test that can be derived from the data in this table
is

h 2h � 1 (t � t )g7 7gT p , (1)�
h t � t � 2tgp1 g7 7g gg

where and (Spielman andh ht p � t t p � tg7 dp1 gd 7g dp1 dg

Ewens 1996). This statistic is a test for marginal ho-
mogeneity; that is, the gth-row sum in the table is the
same as the gth-column sum in this table, for every

. As noted by Schaid (1996), Sham (1997),g p 1, … ,h
and Lazzeroni and Lange (1998), this test statistic may
not have a x2 distribution with df. However, sim-k � 1
ulation methods can be used to assess the statistical sig-
nificance of the observed test statistic.

Because of the ambiguities in the parental haplotypes,
the tgd values are not directly observable for all families,
and the desired table shown above cannot be derived.
Instead, we observe only sets of genotypes g p

, where G is the number of distinct sets of gen-1, … ,G
otypes across all markers. Here each set of genotypes g
refers to the observed genotypes of the individual mark-
ers of the two parents and the affected offspring. Let
{ik,jl} denote the event that the transmitted haplotype in
the father is Hi and the nontransmitted haplotype is Hj

and that the transmitted haplotype in the mother is Hk

and the nontransmitted haplotype is Hl. In the discus-
sion that follows, we designate {ik,jl} as one haplotype
group. Suppose that the haplotype groups {isks,jsls} all
correspond to the same set of genotypes g. Then the
probability for this set of genotypes g is .� Ps s s s s s s s{i k ,j l } i k ,j l

For an arbitrary set of haplotype frequencies {hi}, we
can construct a transmission/nontransmission table T̂

whose expectation is symmetrical under the null hy-
pothesis of no linkage, as follows:

1. Suppose that haplotype group {ik,jl} is compatible
with the set of genotypes g and that the number of
families with the set of genotypes g is ng; then, define

h h h hi j k lik,jlt̂ p n ,g g � h h h hs s s si j k l
s s s s{i k ,j l }�g

where denotes that haplotype groups s s s{i k ,j l } � g
{isks,jsls} is compatible with the set of genotypes g. The
value of is the estimated number of families in whichik,jlt̂g

the father has haplotypes {Hi,Hj} and transmits Hi and
in which the mother has haplotypes {Hk,Hl} and trans-
mits Hk, for the set of haplotype frequencies {hi}.
2. The reconstructed table isT̂

gk,dl ig,jdˆ ˆ ˆt p t � t .��� ���gd g g
g k l g i j

The value of is the estimated number of parents whot̂gd

have haplotypes {Hg,Hd} and who transmit Hg to the
affected offspring. Under the null hypothesis of no link-
age, the expected unobservable “true” T is symmetrical;
that is, , where and .P p P P p E(t ) P p E(t )g,d d,g g,d gd d,g dg

In Appendix A, we prove that, for an arbitrary set of
haplotype frequencies, the expected transmission/non-
transmission table constructed by use of the approachT̂
discussed above is also symmetrical; that is, ,ˆ ˆP p Pg,d d,g

where and .ˆ ˆˆ ˆP p E(t ) P p E(t )g,d gd d,g dg

Therefore, to test linkage, we can test symmetry for
the reconstructed transmission/nontransmission table

. The symmetry of the table will be tested in theˆ ˆT T
following discussion, by use of the marginal-homoge-
neity test statistic (1). Because the matrix is symmet-T̂
rical under the null hypothesis of no linkage, regardless
of the choice of the hi, particular choices of hi affect only
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Figure 1 Power comparison among different testing procedures,
under the dominant disease model. The attributable risk at the locus
is 20%, and the sample consists of 300 families.

Table 2

Observed Type I Error Rates for Different Sample Sizes and Different Population
Structures

r

TYPE I ERROR RATE, FOR

(%)

N p 100 N p 200

Ts Td Th Tu Tc Tml Ts Td Th Tu Tc Tml

:q p .1
2 .5 .35 .35 .35 .3 .35 .35 .35 .3 .3 .3 .35
3 .65 .6 .65 .65 .55 .55 .35 .45 .5 .45 .45 .45
4 .4 .4 .5 .5 .4 .45 .45 .6 .4 .4 .4 .4

:q p .2
2 .6 .6 .4 .6 .55 .55 .6 .55 .55 .3 .3 .35
3 .6 .65 .5 .65 .65 .6 .7 .4 .55 .7 .65 .65
4 .65 .45 .4 .35 .35 .35 .6 .4 .5 .6 .65 .6

:q p .3
2 .55 .55 .55 .6 .5 .55 .8 .3 .35 .35 .3 .35
3 .65 .35 .65 .5 .5 .5 .65 .5 .55 .6 .6 .6
4 .35 .4 .55 .35 .3 .35 .45 .35 .35 .35 .4 .35

:q p .4
2 .6 .5 .5 .4 .45 .4 .7 .55 .6 .65 .6 .6
3 .45 .65 .5 .45 .5 .5 .45 .35 .35 .35 .3 .35
4 .7 .4 .55 .6 .6 .6 .65 .5 .4 .45 .4 .45

the power—and not the validity—of our proposed TDT.
We consider three counting schemes to estimate haplo-
type frequencies. Let if haplotypes HiHj in thedY p 1H Hi j

father of the dth nuclear family are compatible with the
observed set of genotypes g and if Hi is the transmitted
haplotype; that is, haplotype group {ik,jl} is compatible
with g for some k and l. Let otherwise. LetdY p 0H Hi j

be similarly defined for the mother. Also, let cd
dXH Hi j

denote the number of haplotype groups compatible with
the observed set of genotypes for the dth family. The
three different counting schemes for assignment of hap-
lotype frequencies are as follows:

1. Haplotype frequencies are estimated by use of families
with unambiguous haplotypes; that is,

1 d d d dp̂ p (X � Y ) � (X � Y ) ,� � �H H H H H H H H Hi i j i j j i j i[ ]4n {d:c p1} j jdc p1d

where is the number of unambiguous families. Thenc p1d

test statistic derived from this counting scheme is de-
noted as Tu.
2. Haplotype frequencies are estimated by use of both

unambiguous families and ambiguous families, where
the haplotype groups compatible with the observed
set of genotypes in each ambiguous family are as-
signed equal weight; that is,

1 1 d d d dp̂ p (X � Y ) � (X � Y ) ,� � �H H H H H H H H Hi i j i j j i j i{ [ ]}4n cd j jd

where n is the total number of families. The test statistic
derived from this counting scheme is denoted as Tc.
3. Haplotype frequencies are estimated by treating all

parents as a random sample of unrelated individuals
from a population with Hardy-Weinberg equilibrium.
Under this assumption, maximum-likelihood esti-
mates of haplotype frequencies can be obtained by
the expectation-maximization algorithm (Hawley
and Kidd 1995). The test statistic derived from this
counting scheme is denoted as Tml.
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Figure 2 Power comparison among different testing procedures,
under the recessive disease model. The attributable risk at the locus
is 20%, and the sample consists of 300 families.

Other Approaches to Resolution of Ambiguities

Given the uncertainty with regard to parental hap-
lotypes, one approach is to analyze only those families
in which unambiguous haplotypes can be inferred in the
parents. In Appendix B we show that, when we construct
the transmission/nontransmission table, the discarding
of ambiguous families will result in a symmetrical table.
Therefore, we can test the symmetry of the reconstructed
table for genetic linkage, and the resulting test is unbi-
ased if the statistical significance level is controlled by
use of the simulation procedure described below. We
denote this multilocus test statistic as Td. However, as
the number of markers increases, a substantial number
of families may have to be discarded from the analysis,
resulting in a potential loss of information.

An alternative method is to assign to each ambigu-
ous family its most likely haplotype group under the
homogenous-population assumption. This procedure
works as follows. For any set of haplotype frequencies
{hi}, suppose that the haplotype groups {isks,jsls} are all
compatible with the observed set of genotypes g. The
probability of each possible haplotype group under
Hardy-Weinberg equilibrium and random mating is pro-
portional to . We may choose the haplotypeh h h hs s s si j k l

group that has the largest probability, and we recon-
struct the table by assigning to this haplotype group all
families with the observed set of genotypes g; that is,

. In Appendix C, we show that this procedureik,jlt̂ p ng g

also results in a symmetrical transmission/nontransmis-
sion table. Therefore, statistical tests based on this table
are unbiased if the statistical significance level is appro-
priately controlled by use of the randomization proce-
dure described below.

Simulation Results

In this section, we compare our methods versus existing
methods, through simulations. Because the entries in ta-
ble are calculated on the basis of the observed ge-T̂
notype data and are based on a set of haplotype fre-
quencies, the cell counts in the table are not independent.
Therefore, standard asymptotic distributions will not be
valid. To avoid possible bias, we estimate the significance
level of the test statistics, using the following random-
ization procedure, by generating many sets of simulated
samples. Each simulated sample is obtained by randomly
assigning to each affected offspring, with equal chance,
either the observed genotypes at all sites or the non-
transmitted genotypes at all sites. The test statistics are
calculated for each simulated sample. The statistical sig-
nificance level of the observed test statistics can be es-
timated by comparison of the observed values versus the
test statistic values evaluated on the basis of the simu-
lated samples. For example, for the example discussed
before, in which there are two compatible haplotype
groups, the randomization procedure will generate, with
equal probability, the following two types of family trios:

TaqIB TaqID TaqIA
Father 12 12 11
Mother 22 12 22
Child 12 12 12

and

TaqIB TaqID TaqIA
Father 12 12 11

.
Mother 22 12 22
Child 22 12 12

The test statistic is evaluated for each randomized sam-
ple. The empirical distribution of the test statistics from
these randomized samples is then used to estimate the
significance level of the observed test statistic.

Statistical Tests

In our simulation studies, we compare the five test
statistics discussed in the Methods section: Ts, Td, Tu,
Tc, and Tml. In addition, we also consider the multilocus
test statistic, Th, which is calculated under the assump-
tion that haplotypes in the parents could be identified
for all the families. The power of Th represents the best
power achievable with the collected families. These test
statistics are summarized in table 1.
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Table 3

Statistical Tests of Genetic Linkage between the DRD2 Locus and Alcoholism, in 77 Combined German and Hungarian Families

HAPLOTYPE

NO. OF TRANSMISSIONSa

Td ( )P p .053 Tu ( )P p .018 Tc ( )P p .032 Tml ( )P p .025

Transmitted
Not

Transmitted Transmitted
Not

Transmitted Transmitted
Not

Transmitted Transmitted
Not

Transmitted

111 2 4 9.3 6.8 9.5 7.9 9.0 7.4
112 8 17 11.8 26.6 13.2 25.8 13.0 26.0
121 5 5 17.7 11.4 17.4 10.6 18.0 11.0
122 3 6 8.3 10.3 9.0 10.8 9.1 10.6
211 8 2 15.1 8.9 14.8 9.0 15.0 9.2
212 54 39 68.0 55.8 70.6 57.3 71.1 57.3
221 0 0 0 0 2.5 3.5 2.0 3.3
222 10 17 18 28.3 17.2 29.2 17.0 29.1

a Details of the four multilocus TDTs are discussed in the text and also are summarized in table 1. Data are the number of families
in which the eight haplotypes are transmitted and not transmitted from the parents to the affected offspring.

Simulation Models

In our simulations, we consider a variety of genetic
models. The parameters include the number of popu-
lations ( or 2), the attributable risk of the genet-N p 1P

ic system in each population ( 10%, 15%,AR p 0%,
or 20%), the relative risk for the high-risk genotypes
( , 4, or 10), and the genetic model (dominant orr p 2
recessive). Schaid (1996) studied similar simulation
models and described how to calculate haplotype fre-
quencies on the basis of the model parameters. For each
population, we assume Hardy-Weinberg equilibrium
and random mating and that the families are ascertained
through one affected offspring. For each simulation
model, 2,000 independent samples are generated in our
study of type I errors and power. For each sample, the
six test statistics are calculated. In our study, the statis-
tical significance levels are estimated by the randomi-
zation procedure, on the basis of 2,000 randomly gen-
erated samples for type I error rates and on the basis of
20,000 randomly generated samples for power com-
parisons.

Type I Errors

We first verify that all the statistical tests have the
correct nominal false-positive rates. In our simulations,
we consider a three-marker system, with each marker
having two alleles. There are eight haplotypes for this
system: 111, 112, 121, 122, 211, 212, 221, and 222,
with 111 and 222 considered as group I and with the
other six haplotypes considered as group II. The hap-
lotypes within each group are assumed to have the same
haplotype frequency. We assume that the families are
ascertained from two populations, with equal proba-
bility. In the first population, the frequency of each hap-
lotype in group I is .10 (1/10), the frequency of each
haplotype in group II is .13 (2/15), and all genotypes
have the same risk for the disease. For the second pop-

ulation, we vary the frequency of each haplotype in
group I ( , .2, .3, and .4). We assume that all gen-q p .1
otypes also have the same risk in the second population,
but this common risk relative to the common disease
risk in the first population is varied: , 3, or 4. Wer p 2
also vary the number of families ascertained from these
two populations. In table 2, we summarize the estimated
type I error rates for all six statistical tests, for each
model and sample size. The statistical significance level
is set at .005. This level of significance is appropriate if
a candidate gene is studied. However, a more stringent
criterion is needed if a genomewide search is performed
(e.g., see Risch and Merikangas 1996). We choose this
significance level here because our main purpose is to
demonstrate the validity of the testing procedures and
because a more stringent level would require much more
extensive simulation efforts. For 2,000 replicated sam-
ples, the standard error for the type I error rate estimate
is when the true er-�3�.005 # .995/2,000 p 1.6 # 10
ror rate is at the nominal level (.005). We can see from
this table that the estimated type I error rates are not
statistically significantly different from the nominal level.

Power Comparisons

Here we describe the results from our power study
using samples from a homogeneous population. We also
assume a three-marker system, with each marker having
two alleles. Among the eight possible haplotypes, hap-
lotypes 111 and 222 are the high-risk haplotypes with
the same haplotype frequency, and the other six hap-
lotypes have equal frequencies and the same risk. The
high-risk haplotype frequency can be calculated by the
formula reported by Schaid (1996). We assume that 300
families are ascertained from this population, through
an affected child, and that the significance level is set at
.001. As mentioned above, this level of significance is
most appropriate for finding genes via candidate regions,
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Table 4

Statistical Tests of Genetic Linkage between the DRD2 Locus and Alcoholism, in 55 German Families

HAPLOTYPE

NO. OF TRANSMISSIONSa

Td ( )P p .556 Tu ( )P p .270 Tc ( )P p .169 Tml ( )P p .201

Transmitted
Not

Transmitted Transmitted
Not

Transmitted Transmitted
Not

Transmitted Transmitted
Not

Transmitted

111 1 4 8.1 6.1 8.1 7.2 7.9 6.9
112 4 6 5.8 11.8 6.0 10.9 5.9 11.0
121 5 4 15.4 8.9 15.4 8.4 15.7 8.6
122 2 4 4.7 7.3 4.4 7.6 4.4 7.4
211 6 2 12.5 8.0 12.3 7.2 12.6 7.3
212 35 29 44.7 41.1 47.5 42.8 47.6 42.8
221 0 0 0 0 2.2 2.3 1.8 2.2
222 9 13 14.9 22.8 14.0 23.8 14.1 23.8

a Data are as described in the footnote to table 3.

and it may introduce too many false-positive results for
a genomewide search of disease genes. However, our
main purpose here is to compare the performance of
different testing procedures, and we note that the results
are similar when other significance levels are chosen. We
present the power comparisons, with attributable risk
of 20%, in figures 1 and 2. The relative performance of
these tests is similar when the attributable risk is 10%
or 15% (data not shown).

For the dominant disease model (fig. 1), we vary the
relative risk for the high-risk genotype (with one or two
copies of either haplotype 111 or haplotype 222) versus
other genotypes, at 2, 4, and 10. We can see that we
would achieve the best power if we knew the true hap-
lotypes in the parents (i.e., Th). Among the five other
tests that do not require known parental haplotypes, Ts

and Td have the lowest power. All three multilocus tests
(Tu, Tc, and Tml) that are based on reconstruction of the
transmission/nontransmission table have better power,
with Tml having the highest power, Tc having the lowest
power, and Tu having power intermediate between Tml

and Tc.
The power of different statistical tests under the re-

cessive disease model is plotted in figure 2. As in the
dominant-model case, the relative risk for the high-risk
genotype versus other genotypes is varied at 2, 4, and
10. The test that analyzes each marker separately (Ts)
has the lowest power, and the test that assumes known
haplotype information for all families (Th) has the largest
power. The other four tests show similar patterns, with
the dominant model.

DRD2 and Alcoholism

In this section, we apply the statistical methods that we
have discussed, to study genetic linkage between the
DRD2 locus and alcoholism. Among the 77 family trios
included in this study, there were 55 German families

and 22 Hungarian families. Three biallelic polymor-
phisms spanning 30 kb within the DRD2 locus were
genotyped: TaqIB, TaqID, and TaqIA (Kidd et al. 1998).
A full description of this data set and analyses that are
more comprehensive will be described elsewhere. All the
significance levels were estimated by simulations as de-
scribed above. When markers are analyzed separately,
the TDT yields markerwise P values of .41 for TaqIB,
.12 for TaqID, and .04 for TaqIA. When we adjust these
P values to take multiple comparisons into account, us-
ing the method described by Lazzeroni and Lange
(1998), the adjusted P values for these three markers are
.90 for TaqIB, .71 for TaqID, and .23 for TaqIA. When
the three RFLPs are analyzed jointly, there are 32 fam-
ilies with ambiguous haplotypes. The P values are .053,
.018, .032, and .025, for Td, Tu, Tc, and Tml, respectively,
for the combined sample from the two populations. For
each of the four multilocus methods, the estimated
counts that a particular haplotype is transmitted and not
transmitted are summarized in table 3. The results for
the 55 German families are summarized in table 4, and
the results for the 22 Hungarian families are summarized
in table 5. The general transmission patterns are similar
in the two populations, although they are more extreme
in the Hungarian families.

Discussion

The rapid progress in the identification of polymorphic
markers in the human genome has been driving the de-
velopments of powerful and robust statistical methods
for finding the genes underlying complex traits. The
TDT, proposed by Spielman et al. (1993), has proved
to be one powerful approach. The TDT using multiple
tightly linked markers may further increase the statistical
power. However, to apply existing methods, we need to
either discard families with ambiguous haplotypes or
analyze the markers separately, resulting in potential loss
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Table 5

Statistical Tests of Genetic Linkage between the DRD2 Locus and Alcoholism, in 22 Hungarian Families

HAPLOTYPE

NO. OF TRANSMISSIONSa

Td ( )P p .038 Tu ( )P p .052 Tc ( )P p .150 Tml ( )P p .063

Transmitted
Not

Transmitted Transmitted
Not

Transmitted Transmitted
Not

Transmitted Transmitted
Not

Transmitted

111 1 0 1.2 .5 1.5 .8 1.1 .2
112 4 11 5.8 15.0 7.1 14.9 6.1 15.0
121 0 1 2.3 2.4 1.7 2.2 2.3 2.5
122 1 2 3.7 3.1 4.7 3.2 5.6 3.4
211 2 0 2.5 1.0 2.5 2.3 2.5 2.3
212 19 10 23.5 14.5 23.0 14.5 24.4 14.5
221 0 0 0 0 .4 1.1 .1 1.0
222 1 4 3.0 5.4 3.2 5.5 2.0 5.2

a Data are as described in the footnote to table 3.

of power. In this article, we have proposed that the TDT
be extended to multiple markers. Our simulation studies
demonstrate that this multimarker approach can extract
more information on genetic linkage than can single-
marker tests that examine markers separately.

There are basically three classes of TDTs when there
are more than two alleles at the locus of interest: (1)
analysis of all of the alleles simultaneously, without spe-
cific genetic models being assumed (e.g., see Sham and
Curtis 1995; Spielman and Ewens 1996); (2) analysis
of each allele separately and use of the maximal TDT
as the test statistic, an approach called “max-TDT”
(Schaid 1996; Ewens and Spielman 1997); and (3) anal-
ysis of all the alleles under specific genetic models
(Schaid 1996). In this article, we have focussed on the
first approach, by treating all alleles equally. The second
or the third approach may offer better power under
certain circumstances. Another alternative, which is
similar to the max-TDT, is to group alleles before the
TDT is performed. The effects that allele grouping has
on the power to detect linkage disequilibrium have been
studied by Zouros et al. (1977) and Weir and Cock-
erham (1978). Those investigators found that, depend-
ing on the levels of linkage disequilibrium, allelic fre-
quencies, and degrees of freedom, the power can either
increase or decrease after grouping. The group-TDT is
expected to be more powerful than either the TDT or
max-TDT, if several marker alleles are associated with
the disease mutation; however, when only one marker
allele is associated with the disease mutation, or when
the degree of association is relatively uniform across all
marker alleles, the group-TDT may be less powerful
than either the TDT or the max-TDT.

Although we have considered only three biallelic
markers in our simulation studies and in the application
to the alcoholism data set, our methods have also been
found to be more powerful than existing methods, for
genetic systems involving more biallelic markers and/or

microsatellite markers (authors’ unpublished results).
However, the gain in statistical power may be compro-
mised by the existence of many haplotypes if the genetic
system under study has many biallelic markers and/or
if certain microsatellite markers have many alleles. For
such genetic systems, methods similar to those proposed
by Templeton et al. (1987) and Clayton and Jones
(1999) can be employed to reduce the complexities, by
formation of haplotype groups on the basis of their
similarities. Both theoretical and empirical studies are
needed to develop and evaluate statistical methods that
can reduce the complexity of such multisite systems.

Of the three counting schemes for estimation of hap-
lotype frequencies, the Tml, which estimates haplotype
frequencies by assuming that the parents consist of a
random sample of individuals from a population having
Hardy-Weinberg equilibrium, and Tu, which estimates
haplotype frequencies by using unambiguous families,
have similar power, and both are more powerful than
the third counting scheme, Tc. For the real data on al-
coholism, the estimated P values are also similar for Tml

and Tu. This is because unambiguous families make a
substantial contribution to the haplotype-frequency es-
timates in the derivation of the Tml for the genetic sys-
tems considered in this article; thus, the haplotype fre-
quencies estimated by the two approaches are similar.
However, the similarity between the two testing pro-
cedures may not hold for other genetic systems. When
the number of markers is increased, a higher proportion
of the families will become ambiguous with respect to
the resolution of haplotypes, and fewer families can be
used to estimate haplotype frequencies. Therefore, of
the three counting schemes discussed in this article, we
recommend the use of the Tml.

In this article, we have assumed that both parents are
available for genotyping. In the case of a single marker,
the TDT has been extended both to families consisting
of sibships without parents (Curtis 1997; Boehnke and
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Langefeld 1998; Horvath and Laird 1998; Spielman and
Ewens 1998; Teng and Risch 1999) and to families con-
sisting of one affected child and only one parent (Sun
et al. 1999). The same ideas may be used to extend our
methods to either sibships without parents or sibships
with only one parent. In addition, the availability of
additional children may help to reduce the number of
compatible haplotype groups in the parents and may
eliminate ambiguity altogether. The other assumption
in our methods is that there is no recombination among
the tightly linked markers under study. This assumption
can be relaxed to allow for recombinations among the
markers, but more parameters are needed to define the
recombination fractions among the markers, and extra
computations are required. Overall, there may be little
benefit in considering the recombinations for tightly
linked markers. If linkage disequilibrium exists across
the region for a nonadmixture population, then recom-
bination must be quite infrequent and probably can be
safely ignored.

Although the proposed methods are a valid test for
the null hypothesis of no linkage, they are conservative,
because, in the construction of table , the assignmentT̂
of haplotype groups on the basis of the genotypes of
the individual sites is carried out under the assumption
of no linkage. This will diminish the linkage evidence
present in the original sample. An alternative approach,
which may be more powerful, is to assume a parametric
model and to compare the fit of the observed data under
the null and alternative hypotheses. Following Zhao
(1999), we can write the probability of a given set of
genotypes g as

P(g) p Ps s s s� i k ,j l
s s s s{i k ,j l }�g

h h h h P(affectedFH H )s s s s s si j k l i kp ,�
s s s s K{i k ,j l }�g

where K is the disease prevalence in the population,
is the penetrance for the genotypeP(affectedFH H )s si k

comprised of haplotypes , and the are the hap-H H hs s si k i

lotype frequencies. Under the null hypothesis of no link-
age all the are the same, whereas un-P(affectedFH H )s si k

der the alternative hypothesis they may take on different
values. Denote the maximum likelihood under the null
and alternative hypotheses by L0 and La, respectively.
Then the likelihood-ratio statistic can be2log(L /L )a 0

used to assess the statistical significance against the null
hypothesis. However, this approach makes the implicit
assumption that the underlying population is homo-
geneous. Thus, unlike the TDT approach, this para-
metric approach may fail in the presence of population
stratification, as does the method of Clayton (1999).
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Appendix A

PROPOSITION 1. The expected transmission/nontrans-
mission table reconstructed as described in the text isT̂
symmetrical under the null hypothesis of no linkage.

PROOF.
1. Let haplotype group {ik,jl} denote the event that, in

the father, the transmitted haplotype is Hi and the
nontransmitted haplotype is Hj and that, in the
mother, the transmitted haplotype is Hk and the non-
transmitted haplotype is Hl. Suppose that its corre-
sponding set of genotypes g is compatible only with
{ik,jl}. Denote the set of genotypes corresponding to
{jl,ik} by g′. In fact, g′ consists of parents with the
same set of genotypes and of offspring with the non-
transmitted genotype at each site. It is easy to see that
{jl,ik} is the only haplotype group compatible with g′.
Denote all sets of genotypes that have only one com-
patible haplotype group by U. We have established
that, if , then . For such {ik,jl},′ ˆg � U g � U P pik,jl

.ˆP p P p Pik,jl jl,ik jl,ik

2. Suppose that a family with the set of genotypes g has
ambiguities and that {ik,jl} is one haplotype group
that is compatible with g. Denote the set of genotypes
corresponding to {jl,ik} by g′. For every haplotype
group {isks,jsls} compatible with g, haplotype group
{jsls,isks} must be compatible with g′. Therefore, under
the null hypothesis of no linkage, g and g′ have the
same probability, because . For an ar-P p Ps s s s s s s si k ,j l j l ,i k

bitrary set of haplotype frequencies hi,

h h h hi j k lP̂ p P(g) ,ik,jl � h h h hs s s si j k l
s s s s{i k ,j l }�g

h h h hi j k l′P̂ p P(g ) .jl,ik � h h h hs s s si j k l
s s s s ′{j l ,i k }�g

From the above relationships, we get .ˆ ˆP p Pik,jl jl,ik

When the two cases above are combined, the expected
matrix is symmetrical, becauseT̂
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ˆ ˆ ˆP p P � P�� ��g,d gk,dl ig,jd
k l i j

ˆ ˆ ˆp P � P p P .�� ��dl,gk jd,ig d,g
k l i j

Appendix B

PROPOSITION 2. The expected transmission/nontrans-
mission table constructed by use of only unambiguous
families is symmetrical.

PROOF. Suppose that the observed set of genotypes g
is compatible with only one haplotype group {ik,jl}. Let
g′ and U be as defined in the proof of Proposition 1.
Denote the transmission/nontransmission table using
only unambiguous families by and denote the expectedT̃
entries in this table by . This table is symmetrical,P̃g,d

because , and′g � U ⇔ g � U

P̃ p P � P� �g,d gk,dl ig,jd
k,l,{gk,dl}�U i,j,{ig,jd}�U

˜p P � P p P ,� �dl,gk jd,ig d,g
k,l,{dl,gk}�U i,j,{jd,ig}�U

under the null hypothesis of no linkage.

Appendix C

PROPOSITION 3. The expected transmission/non-
transmission table constructed by assigning to each am-
biguous family its most likely haplotype group is
symmetrical.

PROOF. Suppose that the observed set of genotypes g
has ambiguities. Denote the set of genotypes correspond-
ing to {jl,ik} by g′. For every {isks,jsls} compatible with g,
{jsls,isks} must be compatible with g′. Therefore, under
the null hypothesis of no linkage, g and g′ have the same
probability, because . Suppose that, in theP p Ps s s s s s s si k ,j l j l ,i k

set of haplotype groups compatible with g, {imkm,jmlm}
is the most likely haplotype group when Hardy-Wein-
berg equilibrium and random mating are assumed.
Then, {jmlm,imkm} must be the most likely haplotype
group compatible with g′. Therefore, P̂ p P(g)m m m mi k ,j l

and . For all other {isks,jsls} and {jsls,isks},′P̂ p P(g )m m m mj l ,i k

. We can now see that the expectedˆ ˆP p P p 0s s s s s s s si k ,j l j l ,i k

is symmetrical, becauseT̂

ˆ ˆ ˆP p P � P�� ��g,d gk,dl ig,jd
k l i j

ˆ ˆ ˆp P � P p P .�� ��dl,gk jd,ig d,g
k l i j
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